APD Semiconductor, Inc.

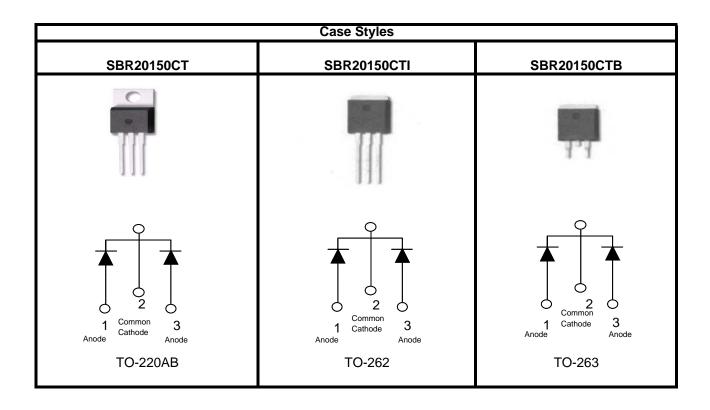
SBR20150CT-prel SBR20150CTI-prel SBR20150CTB-prel

Super Barrier Rectifier TM

Using state-of-the-art SBR IC process technology, the following features are made possible in a single device:

Major ratings and characteristics

Characteristics	Values	Units	
$I_{F(AV)}$ Rectangular Waveform	20	А	
V _{RRM}	150	V	
I _R @150V, Tj=25°C	12	nA, typ	
Tj(operating/storage)	-65 to 200	°C	

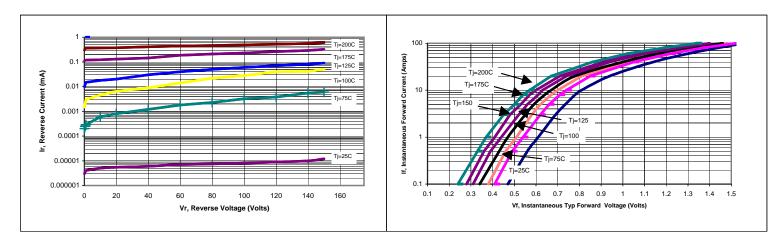

ELECTRICAL:

- * Ultra High Thermal Reliability
- * Low Reverse Leakage
- * Reliable High Temperature Operation
- * Super Barrier Design
- * Softest, fast switching capability
- * 200°C Operating Junction Temperature

Device optimized for high temperature Power Supply applications

MECHANICAL:

* Molded Plastic TO-220AB, TO-262, TO-263 packages



	SYMBOL			UNITS
DC Blocking Voltage Working Peak Reverse Voltage Peak Repetitive Reverse Voltage	V _{RM} V _{RWM} V _{RRM}	150		Volts
RMS Reverse Voltage	V _{R(RMS)}	150		Volts
Average Rectified Forward Current (Rated V _R -20Khz Square Wave)-50% duty cycle	I _o	20		Amps
Peak Forward Surge Current - 1/2 60hz	I _{FSM}	180		Amps
Peak Repetitive Reverse Surge Current (2uS-2Khz)	I _{RRM}	3		Amps
Instantaneous Forward Voltage (per leg) $I_F = 10A; T_J = 25^{\circ}C$ $I_F = 20A; T_J = 25^{\circ}C$ $I_F = 10A; T_J = 125^{\circ}C$	V _F	Typ 0.82 0.94 0.67	Max 0.86 0.98 0.71	Volts
Maximum Instantaneous Reverse Current at Rated V_{RM} T _J = 25°C T _J = 125°C	I _R *	Тур 0.012 0.09	Max 5 1	uA mA
Maximum Rate of Voltage Change (at Rated V_{R})	dv/dt	10,000		V/uS
Maximum Thermal Resistance JC	$R\theta_{JC}$	2		°C/W
Operating and Storage Junction Temperature	TJ	-65 to +200		°C

NOTE: Dice are available for customer applications.

* Pulse width < 300 uS, Duty cycle < 2%

APD Semiconductor, Inc.

Figure 1: Typical Reverse Current

Figure 2: Typical Forward Voltage

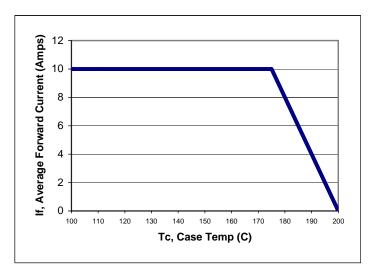


Figure 3: Current Derating, Case

APD SEMICONDUCTOR reserves the right to make changes without further notice to any products herein. APD SEMICONDUCTOR makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APD SEMICONDUCTOR assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APD SEMICONDUCTOR data sheets and/or specifications can and do avry in different applications and actual performance may vary over time. All operating parameters, including "Typical" arameters which may be provided for each customer application by customer's technical experts. APD SEMICONDUCTOR does not convey any license under its patent rights nor the rights of others. APD SEMICONDUCTOR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application is support or sustain life, or for any other application. Buyer shall indemnify and hold APD SEMICONDUCTOR and its officers, employees, subsidiaries, antificates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attomey fees arising out of, directly or indirectly, any claim of personal injury or deat may cours. Should design or dust application is activated for the part.

APD Semiconductor, Inc.

2372-C Qume Drive, San Jose, CA 95131, USA Ph: 408 324 0918 FAX: 408 955 0604 Homepage: www.apdsemi.com email: info@apdsemi.com